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Deep Learning and
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Jeff Dean
Google Brain team
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Presenting the work of many people at Google
Mostly the work of Google Brain and Google Applied Sciences teams


http://g.co/brain
http://g.co/brain

Intro to machine learning and deep learning

Artificial Intelligence

Making computers

smarter Machine Learning

Making computers
that learn

Observation: programming a computer to be clever is harder than
programming a computer fo learn to be clever.




Deep learning is causing
a machine learning revolution

® deep learnin .
P g Interest over time
Search term




Deep Learning

Modern Reincarnation of Artificial Neural Networks

Collection of simple trainable mathematical units, organized in layers, that work together to solve
complicated tasks

What's New Key Benefit

layered network architecture, Learns features from raw, heterogeneous data
new training math, *scale* No explicit feature engineering required
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functions a deep neural network can learn
input output

Pixels: “lion”




functions a deep neural network can learn
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“How cold is i1t outside?”



functions a deep neural network can learn
input

output
Pixels: “lion”
Audio: 2a
“Hello,

“How cold i1s it outside?”
how are you?”

“Bonjour,

comment allez-vous?”



functions a deep neural network can learn
input

Pixels:

Audio:;

PRENEE by S -

“"Hello, how are you?”

Pixels:

output

“lion”

“How cold is i1t outside?”

“Bonjour, comment allez-vous?”

“A blue and yellow train
travelling down the tracks”



But why now?
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2011

humans

- 26% errors . 5% errors




2011 2076

humans

- 26% errors . 5% errors

3% errors



Google Brain Team Mission:
Make Machines Intelligent.
Improve People’s Lives.



How do we do this?

Conduct long-term research (>200 papers, see g.co/brain & g.co/brain/papers)

o Unsupervised learning of cats, Inception, word2vec, seq2seq, DeepDream, image
captioning, neural translation, Magenta, ML for robotics control, ...

Build and open-source systems like TensorFlow (see tensorflow.org and
https://github.com/tensorflow/tensorflow)

Collaborate with others at Google and Alphabet to get our work into
the hands of billions of people (e.g., Google Translate, RankBrain for Google

Search, GMail Smart Reply, Google Photos, Google speech recognition, Waymo, ...)

Train new researchers: internships, Google Brain Residency program

Conduct applied ML research in emerging areas where new ML
methods will make a big difference like healthcare and robotics



http://g.co/brain
https://research.google.com/pubs/BrainTeam.html
http://tensorflow.org/
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
http://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://en.wikipedia.org/wiki/RankBrain
https://en.wikipedia.org/wiki/RankBrain
https://research.googleblog.com/2015/11/computer-respond-to-this-email.html
https://research.googleblog.com/2014/09/building-deeper-understanding-of-images.html
https://research.googleblog.com/2012/08/speech-recognition-and-deep-learning.html
http://waymo.com
https://en.wikipedia.org/wiki/RankBrain
http://g.co/brainresidency

Main Research Areas

General Machine Learning Algorithms and Techniques
Computer Systems for Machine Learning

Natural Language Understanding

Perception

Healthcare

Robotics

Music and Art Generation
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Growing Use of Deep Learning at Google

# of directories containing model description files Across many
4000 products/areas:
Android
wn Apps
= drug discover
5 3000 rug di y
+ Gmail
e Image understanding
= Maps
-“’i’. 2000 Natural language
o understanding
iy Photos
= R— Robotics research
= Speech
= Translation
YouTube
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Experiment Turnaround Time and Research Productivity

Minutes, Hours:

o Interactive research! Instant gratification!
1-4 days

o Tolerable

o Interactivity replaced by running many experiments in parallel
1-4 weeks

o High value experiments only
o Progress stalls

>1 month

o Don't eventry




Build the right tools



fTensorFIow

http.//tensorflow.org/

and

https://github.com/tensorflow/tensorflow

Open, standard software for
general machine learning

Great for Deep Learning in

particular
First released Nov 2015

Apache 2.0 license



http://tensorflow.org/
http://tensorflow.org/
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow

TensorFlow Goals

Establish common platform for expressing machine learning ideas and systems
Make this platform the best in the world for both research and production use

Open source it so that it becomes a platform for everyone, not just Google



Github Stars

@ MicrosoftfCNTK - @ torchitorch? @ Theano/Theano @ scikit-learndscikit-.. @ dmic/mxnet @ ensorflow/tensorflo. .

@ BVLC/caffe
51847

50000 + TensorFlow —

45000
40000
35000
30000
25000
20000
15000
10000

5000

330

03/20/2017

B Microsoft/ CNTK 9960
[ torchitorch? 6540
B Theano/Theano 5910
B scikit-learn/scikit-learn 17340
B dmlc/mxnet 8880
B tensorflow/tensorflow 51847
[ BVLC/caffe 16680

05/06/2013 09/23/2013 051372014 12/30/2014 081972015 04/06/2016 03/2372017




e Rapid development, many outside contributors
o 475+ non-Google contributors to TensorFlow 1.0
o 15,000+ commits in 15 months
o Many community created tutorials, models, translations, and projects
m ~7,000 GitHub repositories with ‘TensorFlow’ in the title

e Direct engagement between community and TensorFlow team
o 5000+ Stack Overflow questions answered

o 80+ community-submitted GitHub issues responded to weekly

e Growing use in ML classes: Toronto, Berkeley, Stanford, ...



New-found computer vision prowess.

Often can develop a model to solve one
problem, reuse it for other problems

Google
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WWW.qoogle.com/sunroof

Google Project Sunroof

1,658 hours of usable sunlight per year

Based on day-to-day analysis of weather patterns

708 sq feet available for solar panels
Based on 3D modeling of your roof and nearby trees



http://www.google.com/sunroof
http://www.google.com/sunroof

Medical Imaging



Diabetic Retinopathy as a Classification Problem

Moderate Proliferative

Google




Humans are inconsistent

. None

Mild
Moderate
Severe

| Proliferative

Patient
Images
(1 MB)

Ophthalmologist Graders

Consistency: intergrader ~60%, intragrader ~65%



JAMA 3o
American Medical Association

December 13, 2016
Development and Validation of a Deep Learning Al-

gorithm for Detection of Diabetic Retinopathy in
Retinal Fundus Photographs

Varun Gulshan, PhD’; Lily Peng, MD, PhD'; Marc Coram, PhD; et al

¥ Author Affiliations

JAMA. 2016;316(22):2402-2410. doi:10.1001/jama.2016.17216




J AMA The Joumnal of the
American Medical Association

December 13, 2016

Development and Validation of a Deep Learning Al-
gorithm for Detection of Diabetic Retinopathy in
Retinal Fundus Photographs

Varun Gulshan, PhD’; Lily Peng, MD, PhD'; Marc Coram, PhD; et al

¥ Author Affiliations
JAMA. 2016;316(22):2402-2410. doi:10.1001/jama.2016.17216

Performance on par or slightly better than the median of 8 U.S.

board-certified ophthalmologists (F-score of 0.95 vs. 0.91).
http://research.googleblog.com/2016/11/deep-learning-for-detection-of-diabetic.html



http://research.googleblog.com/2016/11/deep-learning-for-detection-of-diabetic.html
http://research.googleblog.com/2016/11/deep-learning-for-detection-of-diabetic.html

Detecting Cancer Metastases on
Gigapixel Pathology Images

Yun Liu'*, Krishna Gadepalli', Mohammad Norouzi!, George E. Dahl?,
Timo Kohlberger!, Aleksey Boyko!, Subhashini Venugopalan?**,
Aleksei Timofeev?, Philip Q. Nelson?, Greg S. Corrado?, Jason D. Hipp?,
Lily Peng', and Martin C. Stumpe’

{1iuyun,mnorouzi,gdahl,lhpeng,mstumpe }@google . com

1Google Brain, 2Google Inc, ®*Verily Life Sciences,
Mountain View, CA, USA

Blog: https://research.googleblog.com/2017/03/assisting-pathologists-in-detecting.html
Paper: https://arxiv.org/abs/1703.02442



https://research.googleblog.com/2017/03/assisting-pathologists-in-detecting.html
https://arxiv.org/abs/1703.02442

ML Challenges in Pathology

)4
A Extremely large images (> 100k x 100k pixels)
A Multiscale problem - need detail as well as context
10x
20x
40x

150k pixels (15 Gigapixel image)



Prediction on center

Multiscale model 128x128 patch at 40X

"
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Ensemble
average

Multi scale model

detail «—— context

resembles microscope — : —( | Independent
magnifications ; InceptionV3 towers

pre-trained on
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Detecting breast cancer metastases in lymph nodes

biopsy image ground truth model prediction model prediction
(from pathologist) (early results) (current results)

non-tumor
regions

~*tumor not annotated in
ground truth

reduced noise in -
normal regions
(everywhere else)

tumor (in ground truth)

=

Tumor probability

o



Model performance compared to pathologist

our model pathologist*
Tumor localization score (FROC) 0.89 0.73
Sensitivity at 8 FP 0.92 0.73
Slide classification (AUC) 0.97 0.96

* pathologist given infinite time per image (reaching 0 FPs)

Evaluated using Camelyon16 dataset (just 270 training examples!)



LETTER

doi

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE DennatOIOgi-St_level CIaS iﬁcation Of Skin cancer
with deep neural networks

Andre Esteva'*, Brett Kuprel'*, Roberto A. Nov Susan M. Swetter’*, Helen M. Blz

l [ s | n N S l [A H N T Basal cell carcinomas * Epidermal benign

Artificial intelligence powers detection * Epidermal malignant
Melanocytic benign

of skin cancer fromimages 4 )
- * Melanocytic malignant

Squamous cell carcinomas

Seborrhoeic keratoses

- Lrerns Work on dermatology from
Stanford University




Measuring live cells with
Image to image regression

“Seeing More”

Google



Enabling technology: Image to image regression

[ True Depth ] [ Predicted Depth ]




Depth prediction on portrait data




Applications for camera effects

Input Saturation Defocus




Predict cellular markers
from transmission microscopy?

brightfield z-stack

two fluorescence channels
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Many applications

e Measure live cells that can’t be modified

e Impute labels on live cells in longitudinal
studies to build predictors of ultimate fate

e Map the entire cellular neighborhood for
experiments coupled to partial transfection

e Impute unlimited number of labels; no longer
limited by microscope’s channels




Deep learning for genomics

Google



Recasting variant calling for deep learning

Encode reads and reference as images Use inception-v3 to call variant genotype
True
SNPs ;
True Train on Genome in a Bottle sample
Indels using their genotype labels
Each germline WGS dataset provides
e.g., ~3.7M labeled varaints for training:
I.:alse e 215K false positives candidates
variants e 2.1M true heterozygotes

e 1.3M true homozygous alternates

Encoding is roughly red = {A,C,G,T}; green = {quality score}; blue = {read strand};
alpha = {matches ref genome}



DeepVariant won an award at the 2016
PrecisionFDA competition

SNP:eKr;:cf:;\ance 9 = ® ® 9985
g > —o * 99.70
© e
o -
£ 92
Ryan Poplin Mark DePristo LL
Verily Life Sciences Team —
o
2
O 99.0-
n 98.91
< v2 =>v3 truth set  Unblinded =>
E for unblinded blinded sample
S 985 sample with v3 truth set
= 98.
pr_eclsrorr_w_uligg&r 6
2016 9
0.
NA12878 v2.19 NA12878 v3.3b HG002 v3.3b
sample

F-measure is the harmonic mean of precision and recall.

method

. # DeepVariant

-+ Verily| GATK
# Broad|GATK



DeepVariant can learn to call variants in

many sequencing technologies

10X Chromium PacBio raw SOLID SE 85x lllumina
Dataset 75X WGS reads 40x WGS WGS TruSeq exome
D?Fef\rf;ﬁg; 99.3% 92.7% 86.4% 96.1%
3‘%?‘?1?525 98.2% 56.1%' 78.8%? 95.4%
Compi;aﬁg: Long Ranger samtools GATK ensemble

"No standard caller exists for this technology for human samples;
20Id technology without any maintained variant callers.


http://www.10xgenomics.com/instrument/
http://www.10xgenomics.com/instrument/
http://www.10xgenomics.com/instrument/
http://www.10xgenomics.com/instrument/
http://www.pacb.com/blog/introducing-the-sequel-system-the-scalable-platform-for-smrt-sequencing/
http://www.pacb.com/blog/introducing-the-sequel-system-the-scalable-platform-for-smrt-sequencing/
http://www.pacb.com/blog/introducing-the-sequel-system-the-scalable-platform-for-smrt-sequencing/
http://www.pacb.com/blog/introducing-the-sequel-system-the-scalable-platform-for-smrt-sequencing/
http://www.egyptianbuffalo.org/
http://www.egyptianbuffalo.org/
http://www.egyptianbuffalo.org/
http://www.egyptianbuffalo.org/
http://www.gtbiotech.com.tw/products/images/MiSeq.jpg
http://www.gtbiotech.com.tw/products/images/MiSeq.jpg
http://www.gtbiotech.com.tw/products/images/MiSeq.jpg
http://www.gtbiotech.com.tw/products/images/MiSeq.jpg

Machine learning for
Predictive Tasks in Healthcare



Predictive tasks for healthcare

Given a patient’'s EMR data, can we predict the future?

Deep learning methods for sequential prediction are becoming extremely good
e.g. recent improvements in Google Translation



Neural Machine Translation

B et perfect translation

neural (GNMT)
phrase-based (PBMT)

1SN

N

Closes gap between old system
and human-quality translation
by 58% to 87%

Translation quality
w

—

o

English English English Spanish French Chinese

> > > > > > ° °
Spanish French Chinese English English  English Enables better communication
across the world

Translation model

research.googleblog.com/2016/09/a-neural-network-for-machine.html



https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html

Predictive tasks for healthcare

Given a large corpus of training data of de-identified medical records, can we
predict interesting aspects of the future for a patient not in the training set?

will patient be readmitted to hospital in next N days?

what is the likely length of hospital stay for patient checking in?

what are the most likely diagnoses for the patient right now? and why?
what medications should a doctor consider prescribing?

what tests should be considered for this patient?

which patients are at highest risk for X in next month?

Collaborating with several healthcare organizations, including UCSF, Stanford, and
Univ. of Chicago. Have early very promising results (no public paper yet)

If your org might be interested in working with us, see contact link at bottom of:
g.co/brain/healthcare



http://g.co/brain/healthcare

Machine learning for
Quantum Chemistry



Levels of quantum theory

Paul Dirac: “The underlying physical laws necessary for the
mathematical theory of a large part of physics and the whole of
chemistry are thus completely known, and the difficulty is only
that the exact application of these laws leads to equations
much too complicated to be soluble.

The community has spent years developing
approximations that can be practically applied

https://en.wikipedia.org/wiki/Ab_initio_quantum_chemistry _methods

Electronic structure
methods

Valence bond theory
Generalized valence bond
Modern valence bond
Rescnance

Molecular orbital theory
Hartree—Fock method
Semi-empirical guantum chemistry methods
Maller—Plesset perturbation theory
Configuration interaction
Coupled cluster
Multi-configurational self-consistent field
Quantum chemistry composite methods
Quantum Monte Cario
Linear combination of atomic orbitals

Electronic band structure
Mearly free electron model
Tight binding
Muffin-tin approximation
Density functional theory
k-p perturbation theory
Empty lattice approximation



https://en.wikipedia.org/wiki/Ab_initio_quantum_chemistry_methods
https://en.wikipedia.org/wiki/Ab_initio_quantum_chemistry_methods

Google Research Blog

Predicting Properties of Molecules with Machine Learning
Friday, April 07, 2017
https://research.googleblog.com/2017/04/predicting-properties-of-molecules-with.html

Fast machine learning models of electronic and energetic properties consistently reach
approximation errors better than DFT accuracy

Felix A. Faber,!* Luke Hutchison,®“ Bing Huang,! Justin Gilmer,*s* Samuel 8. Schoenholz,*:* George
E. Dahl,* Oriol Vinyals,* Steven Kearnes,? Patrick F. Riley,* and 0. Anatole von Lilienfeld®:’

Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials,
Department of Chemistry, Universify of Sasel, Switzerlond.
* Authors contributed egually
*Google, CA, USA.
Y Google Brain, CA, USA.
Google DeepMind, London, UK.
(Dated: February 21, 2017)

Neural Message Passing for Quantum Chemistry To a ppear in

ICML 2017

Justin Gilmer ! Samuel S. Schoenholz' Patrick F. Riley ? Oriol Vinyals® George E. Dahl*
https://arxiv.org/abs/1702.05532 and https://arxiv.org/abs/1704.01212



https://arxiv.org/abs/1702.05532
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1702.05532
https://research.googleblog.com/2017/04/predicting-properties-of-molecules-with.html
https://research.googleblog.com/2017/04/predicting-properties-of-molecules-with.html

Basic Idea: Use New Kind of Neural Net Model to
Approximate Really Expensive Computation

DFT ) Targets
~ 103 seconds [£,wp, ---

-

Message Passing Neural Net
% e
e ! f”}:{ fo
=\ % =N 4 N 4

~ 1072 seconds

Figure 1. A Message Passing Neural Network predicts quantum To appear in
properties of an organic molecule by modeling a computationally ICML 2017
expensive DFT calculation.

https://arxiv.org/abs/1704.01212



https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1704.01212

Machine learning approximation error below DFT error

I o EHO ELU Ag (Rg) ZPVE U c. w1
Debye Bohr® eV eV eV Bohr? eV eV cal/molK cm™!
Mean 267 753 -6.54 0.322 6.86 1190 4.06 -76.6  31.6 3500
MAD 1.17 6.29 0.439 1.05 1.07 203 0O.717 819 321 238
6,41 6,41 6 6 6 . .6 6,42 6 6 6,42
Target 0.1 0.1 0.0434 0.0434 0.0434 1.2 0.00124 0.0434 0.05 10
41 41 43 43 43 39 44 45 39
DFT/ B3LYP 0.1 0.1 024 008 022 - 0.0097 .12 0.34 28

MAD: mean average deviation

Target: Target mean average error values generally accepted as “accurate enough” by chemistry community

DFT/B3LYP: Mean average error obtained by very computationally expensive density functional theory
simulations

https://arxiv.org/abs/1702.0553



https://arxiv.org/abs/1702.05532
https://arxiv.org/abs/1702.05532
https://arxiv.org/abs/1702.05532

Machine learning approximation error below DFT error

I o EHO ELU Ag (Rz) ZPVE U c. w1
Debye Bohr® eV eV eV Bohr? eV eV cal/molK cm™!
Mean 2.67 7.3 -6.54 0.322 6.86 1190 4.06 -76.6  31.6 3500
MAD 1,17 6.29 0.439 1.05 1.07 203 0.717 8.19 3.21 238
6,41 6,41 6 6 6 . .6 6,42 6 6 6,42
Target 0.1 0.1 0.0434 0.0434 0.0434 1.2 0.00124 0.0434 0.05 10
DFT/ B3LYP 01 01 024 008 022 - 0.0097 012 034 28 |
GG |IMG 0.238 | 0.151]0.0587 0.0564 0.0835 5.98 P.00291 Ilﬂ.[lﬁl?' 10.0724] 6.32
GC MG [0.0696]0.227 [0.0509][0.0471][0.0766]5.68 0.00975 0.13  0.0892 [3.15 |

v XV VY

v vV Y

https://arxiv.org/abs/1702.0553
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https://arxiv.org/abs/1702.05532

Connectomics

Machine Learning for
High-throughput Neuroanatomy



. Connectomics: Reconstructing Neural Circuits from
High-Resolution Brain Imaging

Google



Google

Connectomics Timeline

1970's: c. elegans
300 neurons; printed photos; MRC in the UK

2013: retina, drosophila visual system
1000 neurons; O(gigavoxels); Max Planck Institute, MIT, HHMI

In progress: mouse cortical column, whole drosophila brain, song-bird
<100,000 neurons; O(teravoxels); Harvard, HHMI, Allen Institute, MPI

Machines now being designed & built for whole mouse brain
100,000,000 neurons; O(petavoxels)



Automated Reconstruction Progress at Google
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Flood Filling Networks
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Metric: Expected Run Length (ERL)
Google “mean microns between failure” of automated neuron tracing



Google

Automated Reconstruction Progress at Google
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Classical Approach

e Classical segmentation pipeline:

o Predict local image boundaries (edge detectors [70s] — SVMs ['00s] — deep learning [today]).
o Discrete graph partitioning (watershed, connected components, etc.) without machine learning
o Agglomeration of “superpixels” using classifier or heuristics.

Convolutional o R “ Graph
Network PN Partitioning

Superpixel
Agglomeration

e [ssues with classical approach:

o Lack of end-to-end training; certain steps not differentiable.
o Pipeline complexity.
O

Graph partitioning procedure is very brittle and impoverished.

Google



New Technology: Flood Filling Networks

Flood-Filling Networks 2d Inference
0 50 100 150
Michat Januszewski Jeremy Maitin-Shepard Peter Li
Google Google Google
mjanuszlgoogle.com jbms@google.com phlikgoogle.com
Jorgen Kornfeld Winfried Denk
Max Planck Institute for Neurobiology Max Planck Institute for Neurobiology
kornfeld@neuro.mpg.de winfried.denk@neuro.mpg.de
Viren Jain

Google
virenlgoogle.com

e Start with a seed point

e Recurrent neural network iteratively
fills out an object based on image
content and its own previous

predictions .
Google https://arxiv.org/abs/1611.00421



https://arxiv.org/abs/1611.00421
https://arxiv.org/abs/1611.00421

——Flood Filling Networks: 3d Inference




e Application: songbird brain imaged
by Max Planck Institute for
Neurobiology using serial block
face scanning electron microscopy

e 10,600 x 10,800 x 5,700 voxels =
~600 billion voxels

e Successful reconstruction of the
wiring diagram will test specific
hypotheses related to how
biological nervous systems produce
precise, sequential motor behaviors
and perform reinforcement
learning.

R &35 ]

Courtesy Jorgen Kornfeld & Winfried Denk, MPI
Google



Google

Flood Filling Networks: 3d Inference

~ 100 pym (10,000 voxels)




Google

Flood Fillihg Networks: 3d Inference
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Elood FiIIin Networks: 3d Inference
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Automated machine learning
(“learning to learn”)

Google



Current:
Solution = ML expertise + data + computation



Current:
Solution = ML expertise + data + computation

Can we turn this into:
Solution = data + 100X computation

27?77



Early encouraging signs

Trying multiple different approaches:

(1) Reinforcement learning-based architecture search
(2) Model architecture evolution



NEURAL ARCHITECTURE SEARCH WITH
REINFORCEMENT LEARNING

Barret Zoph; Quoc V. Le Appeared earlier this year
P i at ICLR 2017 in France

{barretzoph, gvl}@google.com

Idea: model-generating model trained via RL

(1) Generate ten models

(2) Train them for a few hours

(3) Use loss of the generated models as reinforcement
learning signal

arxiv.org/abs/1611.01578



CIFAR-10 Image Recognition Task

Model | Depth Parameters | Error rate (%)

Network in Network (Lin et al., 2013) - - 8.81
All-CNN (Springenberg et al., 2014) - - 7.25
Deeply Supervised Net (Lee et al., 2015) - - 7.97
Highway Network (Srivastava et al., 2015) - - 7.72
Scalable Bayesian Optimization (Snoek et al., 2015) - - 6.37
FractalNet (Larsson et al., 2016) 21 3B.eM 522
with Dropout/Drop-path 21 38.6M 4.60
ResNet (He et al., 2016a) | 110 1.7M | 6.61
ResNet (reported by Huang et al. (2016b)) | 110 1.7M | 6.41
ResNet with Stochastic Depth (Huang et al., 2016b) 110 1.7M 5.23
1202 10.2M 4.91
Wide ResNet (Zagoruyko & Komodakis, 2016) 16 11.0M 4.81
28 36.5M 4.17
ResNet (pre-activation) (He et al., 2016b) 164 1.7M 5.46
1001 10.2M 4.62
DenseNet (L = 40, k = 12) Huang et al. (2016a) 40 1.0M 5.24
DenseNet(L = 100, k = 12) Huang et al. (2016a) 100 7.0M 4 1(]

DenseNet (L = 100, k = 24) Huang et al. (2016a) 100 27.2M
Neural Architecture Search v1 no stride or pooling 15 4.2M 5.50
image Neural Architecture Search v2 predicting strides 20 2.5M 6.01

. 7 7 7 Neural Architecture Search v3 max pooling 39 T1M 4 4
have stidesof pooling ayers. FH i e height, FW 3 ltr widh and N fs prbes of Aers, Neural Architecture Search v3 max pooling + more filters | 39 32.0M

Table 1: Performance of Neural Architecture Search and other state-of-the-art models on CIFAR-10.



Penn Tree Bank Language Modeling Task
“‘Normal” LSTM cell

Model | Parameters Test Perplexity

Mikolov & Zweig (2012) - KN-3 2M* 141.2
Mikolov & Zweig (2012) - KNS + cache 2M* 125.7
Mikolov & Zweig (2012) - RNN 6M* 124.7
Mikolov & Zweig (2012) - RNN-LDA ™* 113.7
Mikolov & Zweig (2012) - RNN-LDA + KN-5 + cache OM* 92.0
Pascanu et al. (2013) - Deep RNN 6M 107.5
Cheng et al. (2014) - Sum-Prod Net sM* 100.0
Zaremba et al. (2014) - LSTM (medium) 20M 82.7
Zaremba et al. (2014) - LSTM (large) HAEM 8.4
Gal (2015) - Variational LSTM (medium, untied) 20M 9.7
Gal (2015) - Variational LSTM (medium, untied, MC) 20M T8.6
Gal (2015) - Variational LSTM (large, untied) HAM 0.2
H Gal (2015) - Variational LSTM (large, untied, MC) HAM 73.4
Ce” dlscovered by Kim et al. (2015} - CharCNN 19M 78.9
T Press & Wolf (2016) - Variational LSTM, shared embeddings 24M 74.2
arCh IteCtu re SearCh Merity et al. (2016) - Zoneout + Variational LSTM (medium) 20M 80.6
' 3 Merity et al. (2016) - Pointer Sentinel-LSTM (medium) 21IM 70.9

Zilly et al. (2016) - Variational RHN, shared embeddings 24M [66.0]
Neural Architecture Search with base 8 32ZM 67.9
Neural Architecture Search with base 8 and shared embeddings 25M 64,0

Neural Architecture Search with base 8 and shared embeddings 54M I 62.4 I

Table 2: Single model perplexity on the test set of the Penn Treebank language modeling task.
Parameter numbers with + are estimates with reference to Merity et al. (2016).




More computational power is heeded

Deep learning is transforming how we
design computers

Google



Special computation properties
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Special computation properties

educed about 1.2 1.210
precision xabout0.6 NOT X 127
ok
about 0.7 0./398933
handful of N
specific —

operations
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Tensor Processing Un

Custom Google-designed chip for gii?”
neural net computations

In production use for >24 months: used on every
search query, for neural machine translation,
for AlphaGo match, ...



Tensor Processing Unit v2

By

o900 b

Google-designed device for neural net training and inference



Google’s 2nd-gen TPU:

e 180 teraflops

e 64 GB of ultra-high-bandwidth-memory
e Designed for training and inference

e Designed to be connected together






TPU Pod
64 2nd-gen TPUs
11.5 petaflops
4 terabytes of memory
2-D toroidal mesh network



8 devices (32 chips, 1/8th of a 64-TPU-pod)

trains one of our machine translation models

4x faster
than 92 of the best commercially-available GPUS



Programmed via TensorFlow

New Estimator interface being added to TF 1.2
Same program will run with only minor
modifications on CPUs, GPUs, & TPUs

Will be Available through Google Cloud
Cloud VM with TPU - virtual machine w/180 TFLOPS TPUv2 device attached




TensorFlow Research
Cloud (TFRC)

¥

Making 1000 Cloud VMs with TPUs available for free to top researchers who
are committed to open machine learning research

Total of 180 PFLOPS: More raw FLOPS than #1 supercomputer in the world
g.co/tpusignup


http://g.co/tpusignup
http://g.co/tpusignup

Conclusions

Deep neural networks and machine learning are starting to
produce significant breakthroughs in healthcare and basic

science
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Conclusions

Deep neural networks and machine learning are starting to
produce significant breakthroughs in healthcare and basic

science

If you're not considering how to use deep neural nets to solve
your problems, you almost certainly should be

More info:
g.co/brain and g.co/brain/healthcare and research.google.com

Thank you! Questions? =


http://g.co/brain
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